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Abstract. We set up a field theoretical model based on Abelian Chern-Simons field theories to describe the
topological entanglement of two polymers. The topological states of the system are distinguished using the
link invariant of Gauss. The second topological moment of the two polymers 〈m2〉, where m is the linking
number, is exactly computed by field theoretical methods. The result is applied to estimate approximatively
the mean square average of the linking number of a polymer P1 in a dilute solution with other polymers.

PACS. 61.41.+e Polymers, elastomers, and plastics – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 11.15.-q Gauge field theories

1 The problem

Consider two polymers P1 and P2 which statistically can
be linked with each other any number of times m =
0, 1, 2, . . . The situation is illustrated in Figure 1 for
m = 2.

Fig. 1. Closed polymers P1, P2 with trajectories C1, C2

respectively.

We would like to find the probability distribution of
the linking numbers m as a function of the lengths of P1

and P2. As a first contribution to solving this problem, we
calculate the second moment of this distribution, 〈m2〉.
The topological states of the two polymers will be distin-
guished here by means of the Gauss linking number, which
counts how many times one polymer winds up around
the other. Despite its incompleteness in the description
of real polymers already noted in [1], the Gauss linking
number is in general used in polymer physics because it is
the simplest invariant that explicitly contains the polymer
conformations, in contrast to algebraic invariants in knot
theory [2].
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Even if the topological constraints are imposed us-
ing the Gauss link invariant, the analytical treatment of
the two-polymer system is mathematically complex. Un-
til now, only the fluctuations of one polymer, let us say
P1, could be treated exactly, while the fluctuations of P2

have been taken into account using various approxima-
tions [3–6]. In [3], for instance, it has been assumed that
P2 is of fixed configuration. In this case, different configu-
rations give different dependences of 〈m2〉 on the polymer
lengths [3]. In [5], instead, the density of bond vectors of
P2 has been considered as Gaussian random variables. The
second topological moment has then been computed in a
non-field theoretical way using a pre-averaging approxima-
tion discussed in [7]. Other analytical approaches to the
problem of topological entanglement of polymers, which
are however not strictly related to the computation of the
second topological moment, have been reviewed in [8–10].
In [11], for example, a set of relevant collective variables
has been constructed in order to describe the fluctuations
of a polymer P1 linked to other polymers in a melt. If the
total number of polymers is large, the statistical proper-
ties of these variables can be approximated by Gaussian
statistics. Interesting results using this method have been
obtained in [12], where the distribution function for the
distance between segments located on different DNA rings
has been computed for several linking numbers.

In the present work we follow a different strategy. The
two-polymer problem is mapped into a field theory and
the topological interactions, which enforce the Gaussian
constraints on the polymers, are propagated by multi-
component Abelian Chern-Simons fields. In this way sev-
eral simplifications occur and, in the absence of excluded
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volume interactions, the computation of the second topo-
logical moment requires just the evaluation of four
Feynman diagrams. Moreover, no approximation is nec-
essary, so that the final result does not depend on the
choice of the fixed obstacles or on the source of Gaussian
noise.

As an application, we compute the mean-square wind-
ing number of a polymer in solution with others. In doing
that, we follow the spirit of reference [13], where it was
emphasized the importance of the two-polymer system as
an useful approximation in treating an arbitrary number
of polymers subjected to topological constraints. Focus-
ing attention upon a particular molecule, P1, the approx-
imation consists in replacing all others by a single long
effective molecule P2.

Let Gm(x1,x2;L1, L2) be the configurational proba-
bility to find the polymer P1 of length L1 with fixed coin-
ciding end points at x1 and the polymer P2 of length L2

with fixed coinciding end points at x2, entangled with a
Gaussian linking number m.

The second moment 〈m2〉 is defined by the ratio of
integrals [3]

〈m2〉=
∫

d3x1d3x2

∫ +∞
−∞ dm m2Gm (x1,x2;L1, L2)∫

d3x1d3x2

∫ +∞
−∞ dmGm (x1,x2;L1, L2)

(1)

performed for either of the two probabilities. The integra-
tions in d3x1d3x2 covers all positions of the end points.
The denominator plays the role of a partition function of
the system:

Z ≡
∫

d3x1d3x2

∫ +∞

−∞
dmGm (x1,x2;L1, L2). (2)

Due to translational invariance of the system, the prob-
abilities depend only on the differences between the end
point coordinates:

Gm (x1,x2;L1, L2) = Gm (x1 − x2;L1, L2) . (3)

Thus, after the shift of variables, the spatial double inte-
grals in (1) can be rewritten as∫

d3x1d3x2Gm(x1−x2;L1, L2) =V

∫
d3xGm(x;L1, L2),

(4)

where V denotes the total volume of the system.

2 Polymer field theory for probabilities

The linking number for the two polymers is given by the
Gauss integral

IG(P1, P2) =
1

4π

∮
P1

∮
P2

[dx1 × dx2] · x1 − x2

|x1 − x2|3
· (5)

It takes the values m = 0, ±1, ±2, ... With the help of two
vector potentials A1 and A2, the phase factor eimλ can be

obtained as a result of a local gauge theory of the Abelian
Chern-Simons type:

eimλ =
∫
DAµ1DA

µ
2

× e−ACS−
R
P1

dx1·A1−λ
R
P2

dx2·A2 , (6)

where ACS is the action

ACS = iκ
∫

d3x εµνρA
µ
1∂νA

ρ
2, (7)

Indeed, the correlation functions Dµν
ij (x,x′) of the gauge

fields

〈Aµ1 (x)Aν1 (x′)〉 = 0, 〈Aµ2 (x)Aν2 (x′)〉 = 0, (8)

〈Aµ1 (x)Aν2 (x′)〉 =
∫

d3p

(2π)3
eip(x−x′) iεµλνpλ

p2
(9)

=
1

4π
εµλν∇λ

1
|x− x′|

=
1

4π
εµνκ

(x− x′)λ
|x− x′|3 , (10)

are such that the functional integral on the right-hand
side of (6) produces directly the phase factor eiIG(P1,P2)λ

with the eigenvalue eimλ. We can select configurations
with a certain value of m from all configurations by form-
ing the integral

∫∞
−∞ dλe−imλ over this quantity. At this

point, it is convenient to define an auxiliary probabil-
ity Gλ(−→x1,−→x2;−→z ), which is the Fourier transformed of
the original configurational probability with respect to m.
This function measures the probability to find the polymer
P1 with open ends at x1,x′1 and the polymer P2 with open
ends at x2,x′2, while the chemical potential conjugated to
the topological number m is given by λ. The double vec-
tors −→x1 ≡ (x1,x′1) and −→x2 ≡ (x2,x′2) collect initial and
final endpoints of the two polymers P1 and P2. Here we fol-
low the approach of Edwards [1], in which one starts with
open polymers with fixed ends. The case of closed poly-
mers, where m becomes a true topological number and it
is thus relevant in the present context, is recovered in the
limit of coinciding extrema. We notice that in this way
one introduces in the configurational probability an artifi-
cial dependence on the fixed points x1 and x2. In physical
situations, however, the fluctuations of the polymers are
entirely free. For this reason, we have averaged in (1) over
all possible fixed points by means of the integrations in
d3x1d3x2.

The most efficient way of describing the statistical fluc-
tuations of the polymers P1 and P2 is by introducing two
complex polymer fields ψa1

1 (x1) and ψa2
2 (x2) with n1 and

n2 replica (a1 = 1, . . . , n1, a2 = 1, . . . , n2). At the end
we shall take n1, n2 → 0 to ensure that these fields de-
scribe only one polymer each [10]. The auxiliary probabil-
ity Gλ(−→x1,−→x2;−→z ) can be expressed as a functional inte-
gral [14] over the replica fiends and the topological fields
as follows

Gλ(−→x1,−→x2;−→z ) = lim
n1,n2→0

∫
D(fields)

×ψai1 (x1)ψ∗a1
1 (x′1)ψa2

2 (x2)ψ∗a2
2 (x′2)e−A, (11)



F. Ferrari et al.: Calculation of second topological moment 〈m2〉 of two entangled polymers 647

where D(fields) indicates the measure of functional inte-
gration and A the action governing the fluctuations. The
expectation value is calculated for any fixed pair (a1, a2)
of replica labels, i.e., replica labels are not subject to
Einstein’s summation convention of repeated indices. The
action A consists of kinetic terms for the fields, a quar-
tic interaction of the fields to account for the fact that
two monomers of the polymers cannot occupy the same
point, the so-called excluded-volume effect , and a Abelian
Chern-Simons field to describe the linking number m [14].
Neglecting at first the excluded-volume effect and focusing
attention on the linking problem only, the action reads

A = ACS +Apol, (12)

with a polymer field action

Apol =
2∑
i=1

∫
d3x

[
|D̄iΨi|2 +m2

i |Ψi|2
]
. (13)

Here we have omitted a gauge fixing term, which enforces
the Lorentz gauge. The topological vector fields are cou-
pled to the polymer fields by the covariant derivatives

Di =∇+ iγiAi, (14)

with the coupling constants γ1,2 given by

γ1 = κ γ2 = λ. (15)

The square masses of the polymer fields are

m2
i = 2Mzi, (16)

whereM = 3/a and a represents the length of the polymer
links. z1 and z2 are chemical potentials, measured in units
of the temperature, conjugated to the length parameters
L1 and L2 respectively. To make closer the analogy with
the usual field theories, we have introduced the pseudo-
constant of Planck ~ = Ma/3 and the mass parameter M
has been fixed by requiring that ~ = 1.

The symbols Ψi collect the replicas of the two polymer
fields

Ψi =
(
ψ1
i , . . . , ψ

ni
i

)
, (17)

and their absolute squares contain the sums over all the
replicas

|DiΨ̄i|2 =
ni∑
ai=1

|Diψaii |2, |Ψi|2 =
ni∑
ai=1

|ψaii |2. (18)

Having specified the fields, we can now write down the
measure of functional integration in equation (11):

D(fields) =
∫
DAµ1DAν2DΨ1DΨ∗1DΨ2DΨ∗2 . (19)

By equation (6), the parameter λ is conjugate to the
linking number m. We can therefore calculate the prob-
ability Gm(−→x1,−→x2;L1, L2) in which the two polymers

are open with different endpoints from the auxiliary one
Gλ(−→x1,−→x2;−→z ) by the following Laplace integral over
−→z = (z1, z1):

Gm(−→x1,−→x2;L1, L2) =

lim
x′1→x1
x′2→x2

∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫ ∞
−∞

dλe−imλGλ (−→x1,−→x2;−→z ) . (20)

In the above formula c denotes as usual a vertical contour
in the complex plane chosen so that all singularities of the
integrand are to the left of it.

3 Calculation of the second topological
moment

At this point the calculation of the second topological mo-
ment (1) can be performed starting from the configura-
tional probability given in equation (20) and using pure
field theoretical techniques.

Let us start with the partition function (2). By equa-
tion (20), it is given by the integral over the auxiliary
probabilities

Z =
∫

d3x1d3x2 lim
x′1→x1
x′2→x2

∫ c+∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫ +∞

−∞
dm

∫ +∞

−∞
dλe−imλGλ (−→x1,−→x2;−→z ) . (21)

The integration over m is trivial and gives 2πδ(λ), enforc-
ing λ = 0, so that

Z =
∫

d3x1d3x2 lim
x′1→x1
x′2→x2

∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×Gλ=0 (−→x1,−→x2;−→z ) . (22)

To compute Gλ=0 (−→x1,−→x2;−→z ) we observe that the action
A in equation (12) is quadratic in λ. Let us expand A as

A = A0 + λA1 + λ2A2 (23)

with the λ-independent part

A0 ≡ ACS

+
∫

d3x

[
|D1Ψ1|2 + |∇Ψ2|2 +

2∑
i=1

m2
i |Ψi|2

]
, (24)

a linear coefficient

A1 ≡
∫

d3x j2(x) ·A2(x) (25)

containing a “current” of the second polymer field

j2(x) = iΨ∗2 (x)∇Ψ2(x), (26)
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and a quadratic coefficient

A2 ≡
1
4

∫
d3x A2

2|Ψ2(x)|2. (27)

With these definitions we write with the help of (24):

Gλ=0 (−→x1,−→x2;−→z ) =
∫
D(fields)e−A0

×ψa1
1 (x1)ψ∗a1

1 (x′1)ψa2
2 (x2)ψa2

2 (x′). (28)

Let us now turn to the numerator in equation (1):

N ≡
∫

d3x1d3x2

∫ ∞
−∞

dm m2Gm (x1,x2;L1, L2) . (29)

We shall set up a functional integral for N in terms of the
auxiliary probability Gλ (−→x1,−→x2;−→z ) analogous to equa-
tion (21). First we observe that

N =
∫

d3x1d3r2

∫ ∞
−∞

dm m2 lim
x′1→x1

x′2→x2

∫ c+i∞

c−i∞

dzi
2πi

dz2

2πi

×ez1L1+z2L2

∫ ∞
−∞

dλe−imλGλ (−→x1,−→x2;−→z ) . (30)

The integration over m is easily performed after noting
that ∫ ∞

−∞
dm m2e−imλGλ (−→x1,−→x2;−→z ) =

−
∫ ∞
−∞

dm
(
∂2

∂λ2
e−imλ

)
Gλ (−→x1,−→x2;−→z ) . (31)

After two integrations by parts in λ and an integration in
m, we obtain

N =
∫

d3x1d3x2 lim
x′1→x1
x′2→x2

(−1)
∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫ ∞
−∞

dλ δ(λ)
[
∂2

∂λ2
Gλ (−→x1,−→x2;−→z )

]
. (32)

The partial integrations in λ have been performed remem-
bering that, because of equations (23, 27), Gλ (−→x1,−→x2;−→z )
satisfies the following property:

lim
λ→±∞

Gλ (−→x1,−→x2;−→z ) = 0. (33)

The now trivial integration in dλ yields

N=
∫

d3x1d3x2 lim
x′1→x1
x′2→x2

(−1)
∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
[
∂2

∂λ2
Gλ (−→x1,−→x2;−→z )

]
λ=0

. (34)

To compute the term in brackets, we use again (23) and
equations (24–27), to find

N =
∫

d3x1d3x2 lim
n1→0
n2→0

∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫
D(fields) exp(−A0)|ψa1

1 (x1)|2|ψa2
2 (x2)|2

×
[(∫

d3xA2 · Ψ∗2∇Ψ2

)2

+
1
2

∫
d3xA2

2 |Ψ2|2
]
· (35)

In this equation we have taken the limits of coinciding
endpoint inside the Laplace integral over z1, z2. This will
be justified later on the grounds that the potentially dan-
gerous Feynman diagrams containing the insertions of op-
erations like |Ψi|2 vanish in the limit n1, n2 → 0.

In order to calculate (35), we decompose the action
into a free part

A0
0 ≡ ACS

+
∫

d3x

[
|∇Ψ1|2 + |∇Ψ2|2 +

2∑
i=1

m2
i |Ψi|2

]
, (36)

and interacting parts

A1
0 ≡

∫
d3x j1(x) ·A1(x) (37)

with a “current” of the first polymer field

j1(x) ≡ iΨ∗1 (x)∇Ψ1(x), (38)

and

A2
0 ≡

1
4

∫
d3x A2

1|Ψ1(x)|2. (39)

Expanding the exponential

e−A0 =e−(A0
0+A1

0+A2
0) =e−A

0
0

[
1−A1

0+
(A1

0)2

2
−A2

0+. . .
]
,

(40)

and keeping only the relevant terms, the functional inte-
gral (35) can be rewritten as a purely Gaussian expecta-
tion value

N = κ2

∫
d3x1d3x2 lim

n1→0
n2→0

∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫
D(fields) exp(−A0

0)|ψa1
1 (x1)|2|ψa2

2 (x2)|2

×
[(∫

d3xA1 · Ψ∗1∇Ψ1

)2

+
1
2

∫
d3xA2

1 |Ψ1|2
]

×
[(∫

d3xA2 · Ψ∗2∇Ψ2

)2

+
1
2

∫
d3xA2

2 |Ψ2|2
]
.

(41)
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+ + +

Fig. 2. The four diagrams contributing in equation (41). Full
lines indicate correlation functions of Ψi-fields. The crossed cir-
cles with label i denote the insertion of |ψaii (xi)|2. Wavy lines
represent the Chern-Simons vector fields.

×

2
664 + + +

3
775

Fig. 3. Disconnected diagrams arising from equation (41) after
Wick contractions. The conventions are the same of Figure 2.
These diagrams vanish identically in the zero replica limit.

Only the four diagrams shown in Figure 2 contribute in
equation (41).

Note that the initially asymmetric treatment of poly-
mers P1 and P2 in the action (12) has led to a completely
symmetric expression for the second moment.

Only the first diagram in Figure 2 is singular due to
the divergence of the loop formed by two vector correlation
functions. This infinity may be absorbed in the four-Ψ in-
teraction accounting for the excluded volume effect which
we do not consider at the moment. No divergence arises
from the insertion of the composite fields |ψaii (xi)|2. In
this respect, the disconnected diagrams shown in Figure 3
are potentally dangerous.

But these vanish in the limit of zero replica indices
n1, n2 → 0.

4 Regularization of the ultraviolet divergences

As we have seen in the previous section, the Feynman di-
agrams involved in the computation of 〈m2〉 are affected
by ultraviolet (UV) divergences, which should be properly
regularized. From a field theoretical point of view, this can
be done in the frame of standard renormalization tech-
niques. In the present case the situation is quite simple,
because the number of relevant diagrams to be computed
is finite. Actually, only the first graph in Figure 2 is di-
vergent. The major difficulty is given by the presence of
the completely antisymmetric tensor εµνρ in the Chern-
Simons action, which requires some care in order to avoid
ambiguities [15]. Alternatively, it is possible to choose the
Pauli-Villars regularization as for instance in [16].

Once a suitable regularization has been selected, one
can start the renormalization program for the theory given
in equation (13). To this purpose, we notice that to ob-
tain non-vanishing Feynman diagrams, the same number
of fields A1 and A2 should be contracted together. More-
over, the vertices propagating the topological interactions

of the monomers with the fields A2 are proportional either
to λ or to λ2. Therefore, it is not difficult to realize that the
counterterms which are needed to subtract the UV singu-
larities are proportional to powers in λ of order n ≥ 1. On
the other side, from equations (22) and (35), it turns out
that the second topological moment depends on the aux-
iliary probability Gλ (−→x1,−→x2;−→z ) and its derivatives up
to the second degree evaluated at the point λ = 0. Thus,
diagrams which contain six vertices or more are propor-
tional to powers of λ of order three or higher and vanish
in the limit λ = 0. As a consequence, for all practical
purposes, only a finite number of Feynman diagrams and
counterterms is necessary to compute 〈m2〉 exactly.

The problem of the above point of view is that UV
divergences occur at infinitesimal distances, while in poly-
mer physics it makes certainly no sense to consider phe-
nomena at length-scales smaller than the monomer size.
Indeed, in real polymers there is a minimal short-distance
scale which provides a natural cut-off to UV singularities.
In principle, one could choose the monomer size as a short-
distance scale, but this would not be phenomenologically
correct. In the approach of Edwards, in fact, the polymers
are treated as random chains, but one should not forget
that in the laboratory the monomers are usually not freely
movable, so that polymers have a certain stiffness. This
gives rise to a certain persistence length ξ0 over which a
polymer is stiff. Such length scale is increased to ξ > ξ0 by
the excluded-volume effects. ξ is the physical parameter
which we are searching as a proper short-distance cut-off.

In this way, it is possible for instance to provide a sim-
ple regularization by cutting off all ultraviolet-divergent
continuum integrals at distances smaller than ξ. This pro-
cedure is however somewhat euristhic, so that here we
prefer to impose the cutoff in a rigorous way by imagin-
ing the model as being defined on a simple cubic lattice
of spacing ξ. In this way, it arises of course the difficulty
of computing space integrals on a lattice. This task can
be achieved only numerically. Nevertheless, we will show
that in the physical limit in which the polymers become
very long, the discrete integrals may be replaced by con-
tinuous ones and it is possible to perform all calculations
analytically. This has a physical explanation. Indeed, if
the polymer lengths are much larger than the persistence
length, the effects due to the finite monomer size become
negligible and can be ignored.

5 Calculation of the partition function

We start the explicit calculation of Z by noting that
in the action (24), the fields Ψ2, Ψ

∗
2 are obviously free,

whereas the fields Ψ1, Ψ
∗
1 are apparently not because of the

couplings with the Chern-Simons fields in the covariant
derivative D1. This coupling is, however, without physi-
cal consequences: Indeed, by integrating out Aµ2 in (28),
we find the flatness condition:

∇×A1 = 0. (42)
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On a flat space with vanishing boundary conditions at
infinity this implies A1 = 0. As a consequence, the func-
tional integral (28) factorizes

Gλ=0 (−→x1,−→x2;−→z ) = G0(x1 − x′1; z1)G0(x2 − x′2; z2),
(43)

where G0(xi − x′i; zi) are the free correlation functions of
the polymer fields:

G0(xi − x′i; zi) = 〈ψaii (xi)ψ∗aii (x′i)〉· (44)

It is now easy to show after a rescaling of the space vari-
ables xi,x′i, i = 1, 2, that the lattice size ξ is negligible
if the polymer are sufficiently long. So it is possible to
treat the discrete integrals in equation (43) as continuous
ones. Going in the momentum space, the free correlation
functions (44) become

〈ψ̃aii (ki)ψ̃∗aii (k′i)〉 = δ(3) (ki − k′i)
1

k2
i +m2

i

· (45)

They are such that

G0(xi − x′i; zi) =
∫

d3k

(2π)3
eik·x 1

k2 +m2
i

, (46)

and

G0(xi − x′i;Li) =
∫ c+i∞

c−i∞

Mdzi
2πi

eziLiG0(xi − x′i; zi)

=
1
2

(
M

4πLi

)3/2

e−M(xi−x′i)
2/2Li . (47)

The partition function (22) is then given by the integral

Z = 2π
∫

d3x1d3x2

× lim
x′1→x1
x′2→x2

G0(x1 − x′1;L1)G0(x2 − x′2;L2). (48)

The integrals at coinciding end points can easily be per-
formed and we find

Z =
2πM3V 2

(4π)3
(L1L2)−3/2. (49)

It is important to realize that in equation (21), the limits
of coinciding end points x′i → xi and the inverse Laplace
transformations like that in (47) do not commute unless
a proper renormalization scheme is chosen to eliminate
the divergences caused by the insertion of the composite
operators |ψα(x)|2. This can be seen for a single polymer.
If we were to commuting the limit of coinciding end points
with the Laplace transform, we would obtain∫ c+i∞

c−i∞

dz
2π

ezL lim
x′→x

G0(x − x′; z) =
∫ c+i∞

c−i∞

dz
2πi

ezLG0(0, z),

(50)

where

G0(0; z) = 〈|ψ(x)|2〉· (51)

This expectation value, however, is linearly divergent:

〈|ψ(x)|2〉 =
∫

d3k

k2 +m2
→∞. (52)

6 First Feynman diagram in Figure 2

At this point we start the computation of the numerator
N of equation (41). From equation (41), the first diagram
in Figure 2 corresponds to the following integral

N1 =
κ2

4
lim
n1→0
n2→0

∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫

d3x1d3x2

∫
d3x′1d3x′2 (53)

×
〈
|ψa1

1 (x1)|2|ψa2
2 (x2)|2

(
|Ψ1|2A2

1

)
x′1

(
|Ψ2|2A2

2

)
x′2

〉
·

which we are going to evaluate using the above lattice reg-
ularization with spacing given by the persistence length ξ.
Replacing the expectation values by the Wick contractions
corresponding to the first diagram in Figure 2, and per-
forming the integrals as shown in the appendix, we obtain

N1 =
V

4π
M4

(4π)6
(L1L2)−

1
2

∫ 1

0

ds [(1− s)s]−
3
2

∫
d3xe−

Mx2
2s(1−s)

×
∫ 1

0

dt [(1− t)t]−
3
2

∫
d3ye−

My2

2t(1−t)

∫
d3x′′1

1
|x′′1 |4

· (54)

The variables x and y, but not x′′1 , have been rescaled
with respect to the original ones for later convenience. As
a consequence, the lattices where x and y are defined have
now spacings ξ/

√
L1 and ξ/

√
L2 respectively.

As we have already remarked, the chosen regulariza-
tion is quite rigorous, but it makes difficult the evaluation
of the integrals over the space variables in equation (54).
Still, the x,y integrals may be explicitly computed in the
physically interesting limit L1, L2 � ξ, in which the above
spacings become small and the discrete integrals can be
replaced by usual integrals over continuous variables. At
this point only the computation of

A(ξ) =
∫

d3x′′1
1
|x′′1 |4

(55)

remains to be done. A(ξ) depends on the cut-off ξ, but
not on the polymer lengths, so that it can be considered
only as a numerical factor. Its analytical evaluation is still
possible if one approximates the integral in x′′1 with an
integral over a continuous variable ρ and a cutoff in the
ultraviolet region:∫

d3x′′1
1
|x′′1 |4

∼ 4π2

∫ ∞
ξ

dρ
ρ2
· (56)
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After these approximations, we finally obtain

N1 = V π1/2 M

(4π)3
(L1L2)−1/2ξ−1. (57)

7 Second and third Feynman diagrams
in Figure 2

Here we have to calculate

N2 = κ2 lim
n1→0
n2→0

∫ c+i∞

c−i∞

Mdz1

2πi
Mdz2

2πi
ez1L1+z2L2

×
∫

d3x1d3x2

∫
d3x′1d3x′′1d3x′2

×
〈
|ψa1

1 (x1)|2|ψa2
2 (x2)|2 ( A1 · Ψ∗1∇Ψ1)x′1

× ( A1 · Ψ∗1∇Ψ1)x′′1
(
A2

2 |Ψ2|2
)
x′2

〉
· (58)

The above amplitude has no ultraviolet divergence, so that
no regularization is required in principle. The Wick con-
tractions pictured in the second Feynman diagrams of Fig-
ure 2 lead to the integral

N2 = −4
√

2V L−1/2
2 L−1

1

M3

π6

∫ 1

0

dt
∫ t

0

dt′C(t, t′), (59)

where C(t, t′) is a function independent of L1 and L2:

C(t, t′) = [(1− t)t′(t− t′)]−3/2

×
∫

d3xd3yd3ze−M(y−x)2/2(1−t)

×
(
∇νye−My2/2t′

)(
∇µxe−Mx2/2(t−t′)

)
×

[
δµνz · (z + x)− (z + x)µ zν

]
|z|3|z + x|3 · (60)

As in the previous section, the variables x,y, z have been
rescaled with respect to the original ones in order to ex-
tract the behavior in L1.

Again, if the polymer lengths are much larger than
the persistence length one can ignore the fact that the
monomers have a finite size and it is possible to compute
C(t, t′) analytically, leading to

N2 = −V L
−1/2
2 L−1

1

(2π)6
M3/24K, (61)

where K is the constant

K ≡ 1
6
B

(
3
2
,

1
2

)
+

1
2
B

(
5
2
,

1
2

)
−B

(
7
2
,

1
2

)
+

1
3
B

(
9
2
,

1
2

)
=

19π
384
≈ 0.154, (62)

and B(a, b) = Γ (a)Γ (b)/Γ (a+ b) is the Beta function. For
large L1 →∞, this diagram gives a negligible contribution
with respect to N1.

The third diagram in Figure 2 is the same as the sec-
ond, except that L1 and L2 are interchanged.

N3 = N2|L1↔L2 . (63)

8 Fourth Feynman diagram in Figure 2

Here we have the integral

N4 = −4κ2 1
2

lim
n1→0
n2→0

∫ c+i∞

c−i∞

dz1

2πi
dz2

2πi
ez1L1+z2L2

×
∫

d3x1d3x2

∫
d3x′1d3x′2d3x′′1d3x′′2

×
〈
|ψa1

1 (x1)|2|ψ2(xa2
2 )|2 (A1 · Ψ∗1∇Ψ1)x′1 (A1 ·Ψ∗1∇Ψ1)x′′1

× (A2 ·Ψ∗2∇Ψ2)x′2
(A2 · Ψ∗2∇Ψ2)x′′2

〉
· (64)

which has no ultraviolet divergence. After some effort we
find

N4 = − 1
16

M5V

(2π)11
(L1L2)−1/2

×
∫ 1

0

ds
∫ s

0

ds′
∫ 1

0

dt
∫ t

0

dt′C(s, s′, t, t′), (65)

where

C(s, s′; t, t′)=[(1−s)s′(s−s′)]−3/2 [(1−t)t′(t−t′)]−3/2

×
∫

d3p

(2π)3

[
εµλα

pα

p2
ενρβ

pβ

p2
+ εµρα

pα

p2
ενλβ

pβ

p2

]
×
[∫

d3x′d3y′e−i
√
L1p(x′−y′)e−Mx′2/2(1−s)

×
(
∇νy′e−My′2/2t′

)(
∇µx′e−M(x−y)2/2(s−s′)

) ]
×
[∫

d3u′d3v′e−i
√
L2p(u′−v′)e−Mv′2/2(1−t)

×
(
∇ρu′e−Mu′2/2t′

)(
∇λv′e−M(u′−v′)2/2(t−t′)

)]
, (66)

and x′,y′ are scaled variables. To take into account the fi-
nite persistence length, they should be defined on a lattice
with spacing ξ/

√
L1. Similarly, u′,v′ should be considered

on a lattice with spacing ξ/
√
L2. Without performing the

space integrations d3x′d3y′d3u′d3v′, the behavior of N4

as a function of the polymer lengths can be easily esti-
mated in the following limits:

1. L1 � 1;L1 � L2

N4 ∝ L−1
1 (67)

2. L2 � 1;L2 � L1

N4 ∝ L−1
2 (68)
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3. L1, L2 � 1, L2/L1 = α = finite

N4 ∝ L−3/2
1 . (69)

Moreover, if the lengths of the polymers are consid-
erably larger than the persistence length, the function
C(s, s′, t, t′) can be computed in a closed form:

N4 ≈ −
128V
π5

M

π3/2
(L1L2)−1/2

×
∫ 1

0

ds
∫ 1

0

dt(1− s)(1− t)(st)1/2

× [L1t(1− s) + L2(1− t)s]−1/2
. (70)

It is simple to check that this expression has exactly the
above behaviors.

9 Final result

Collecting all contributions we obtain for the second topo-
logical moment:

〈m2〉 =
N1 +N2 +N3 +N4

Z
, (71)

where N1, N2, N3, N4, Z are given by equa-
tions (53, 59, 65) and (48) respectively. This is an
exact result, but to get an explicit expression of 〈m2〉 in
the chosen lattice regularization, one is faced with the
evaluation of discrete integrals which can be performed
only numerically. However, polymers are in general very
long flexible molecules, so that the limit L1, L2 � ξ
is of physical interest. In this case, the expressions
of N1, N2, N3, N4, Z have been explicitly derived in
equations (57, 61, 63, 70) and (49).

To discuss the physical content of the result (71),
we consider a dilute solution containing np polymers
p1, . . . , pnp of lengths l1, . . . , lnp respectively. Let pk̄ be
a test polymer, whose topological relationships with re-
spect to polymers pk, pk′ , . . . etc. are given by the Gaus-
sian linking numbers mk̄k,mk̄k′ . . . etc. Clearly, it is licit
to assume that, at least locally, the test polymer will not
be able to distinguish this case from the situation in which
it is winding upm times around another polymer of length
lk + lk′ + . . . , where m = mk̄k +mk̄k′ + . . . In the spirit of
this approximation, we put P1 ≡ pk̄ for the test polymer
and replace the rest of the system with a long effective
molecule P2 of length L2 =

∑
k 6=k̄ lk. At this point we in-

troduce the polymer concentration ρ as the average mass
density of the polymers per unit volume:

ρ =
M
V

(72)

where M is the total mass of the polymers

M =
Np∑
k=1

µa
lk
a
· (73)

Here µa is the mass of a single monomer of length a, thus
lk/a is the number of monomers in the polymer pk. From
the above relations we may write

L2 ≈
aV ρ

µa
· (74)

In this way, the length of the effective molecule P2 is
expressed in terms of physical parameters, the concen-
tration of polymers, the monomer length, and the mass
and volume of the system. Inserting (74) into (71), with
N1, N2, N3, N4, Z given by equations (49, 57, 61, 63),
and (70). and keeping only the leading terms for V � L3

1,
we find for the average square winding number 〈m2〉sol

of the test polymers with all the other polymers in the
solution the approximation

〈m2〉 ≈ N1 +N2

Z
, (75)

Explicitly:

〈m2〉sol ≈
aρ

µa

[
ξ−1L1

2π1/2M2
− 2KL1/2

1

π4M3/2

]
, (76)

with K of (62). Since the persistence length is of the same
order of the monomer length a and M ∼ a−1, 〈m2〉sol is
positive for large L1 as it should.

10 Summary

We have set up a topological field theory to describe two
fluctuating polymers P1 and P2 and calculated the sec-
ond topological moment for the linking number m be-
tween P1 and P2. Since a finite number of diagrams and
counterterms is involved in the computation, it is possi-
ble to derive an exact expression of the second topological
moment using field theoretical techniques. This has been
discussed in Section 4. To take into account also the fi-
nite monomer size, however, one is forced to consider the
model on a lattice, with spacing given by the persistence
length ξ. In this way, the contributions to 〈m2〉 given in
equations (53, 59, 65) and (48) can be evaluated explicitly
only numerically. Yet, we have seen that it is still possi-
ble to obtain an analytical result in the physical limit in
which the polymers are sufficiently long.

As a physical application, it has been derived the
square average number of intersections formed by a test
polymer winding up around other polymers in a dilute
solution. Our formula for 〈m2〉sol of equation (76) is in
agreement at the leading order in L1 with an analogous
formula computed in [5] without using field theories. Un-
fortunately, the method exploited in [5] is not able to
estimate higher order corrections, while the above com-
putations indicate that the nontrivial corrections should
be suppressed by an inverse square root of the polymer
lengths.

Of course, extreme care should be taken in applying
equation (76) to real polymers. First of all, this result has
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been obtained in the two-polymer approximation of [13].
Recently, the auxiliary configurational probability (4) has
been generalized to treat an arbitrary number of poly-
mers [17] and work is in progress in order to compute
〈m2〉sol with a better approximation. Even in that case,
it always remains the limitation of using the Gauss link-
ing number to distinguish the topological states of the
system, which is common to all formulations of the statis-
tical mechanics of polymers based on Edwards approach.
Moreover, here the effects of the excluded volume inter-
actions have been neglected. They will be the subject of
forthcoming work.

Finally, let us emphasize the absence of infrared diver-
gences in the topological field theory (11) in the limit of
vanishing masses m1,m2 = 0. As a consequence, the sec-
ond topological moment does not diverge in the limit of
large L1 if 〈m2〉 is calculated from (11) for polymers pass-
ing through two fixed points x1,x2. This indicates a much
stronger reduction of the configurational fluctuations by
topological constraints than one might have anticipated.

Appendix

In this appendix we present the computations of the am-
plitudes N1, . . . , N4. We shall need the following simple
tensor formulas involving two completely antisymmetric
tensors εµνρ:

εµνρε
µστ = δσν δ

τ
ρ − δτν δσρ , εµνρε

µνλ = 2δλρ . (77)

The Feynman diagrams shown in Figure 2 corresponds to
integrals over products of the polymer correlation func-
tions G0 defined in equation (52), which have to be inte-
grated over space and Laplace transformed. For the latter
we make use of the convolution property of the integral
over two Laplace transforms f̃(z) and g̃(z) of the functions
f, g:∫ c+i∞

c−i∞

Mdz
2πi

ezLf̃(z)g̃(z) =
∫ L

0

ds
M
f(s)g(L− s). (78)

All spatial integrals are Gaussian of the form∫
d3xe−ax

2+2bx·y = (2π)3/2a−3/2eb
2y2/a, a > 0. (79)

Contracting the fields in equation (53), and keeping only
the contributions which do not vanish in the limit of zero
replica indices, we find with the help of equations (77)
and (78):

N1 =
∫

d3x1,d3x2

∫ L1

0

ds
M

∫ L2

0

dt
M

∫
d3x′1d3x′2

×G0(x1−x′1; s)G0(x′1 − x1;L1 − s)G0(x2−x′2; t)

×G0(x′2−x2;L2−t)
1

|x′1−x′2|4
· (80)

Performing the changes of variables

s′ =
s

L1
, t′ =

t

L2
, x =

x1 − x′1√
L1

, y =
x2 − x′2√

L2

, (81)

and setting x′′1 ≡ x′1 − x′2, we easily derive (54).
For small ξ√

L1
and ξ√

L2
, we use the approxima-

tion (56). The space integrals can be done using the for-
mula (79). After some work we obtain the result (68).

For the amplitude N2 in equation (58) we obtain like-
wise the integral

N2 =
∫

d3x1d3x2

∫
d3x′1d3x′′1d3x′2

×
[∫ L1

0

ds
M

∫ s

0

ds′

M
G0(x′1 − x1;L1 − s)

× ∇νx′′1G0(x1 − x′′1 ; s′)∇µx′1G0(x′′1 − x′1; s− s′)
]

×Dµλ(x′1 − x2)Dνλ(x′′1 − x′2)

×
[∫ L2

0

dt
M
G0(x2−x′2;L2−t)G0(x′2−x2; t)

]
.

(82)

where Dµν(x,x′) are the correlation functions (9–10) of
the vector potentials. Setting x2 ≡

√
L2u + x′2 and

supposing that ξ√
L2

is small, the integral over u can
be easily evaluated with the help of the Gaussian in-
tegral (79). After the substitutions x′′1 =

√
L1y + x1

x′1 =
√
L1(y − x) + x1, x′2 =

√
L1(y − x − z) + x1

and a rescaling of the variables s, s′ by a factor L−1
1 , we

derive equation (59) with (60).
For small ξ√

L1
, ξ√

L2
, the spatial integrals are easily

evaluated leading to:

N2 =
−4V L−1/2

2 L−1
1 M3/2

(2π)6

×
∫ 1

0

dt
∫ t

0

dt′t′(1− t)
√

t− t′
1− t+ t′

· (83)

After the change of variable t′ → t′′ = t − t′, the double
integral is reduced to a sum of integrals the type

c(n,m) =
∫ 1

0

dt tm
∫ t

0

dt′t′n
√

t′

1− t′ , m, n = integers.

These can be simplified by replacing tm by dtm+1/dt(m+
1), and doing the integrals by parts. In this way, we end
up with a linear combination of integrals of the form:∫ 1

0

dt
tκ+ 1

2

√
1− t

= B

(
κ+

3
2
,

1
2

)
. (84)

The calculations of N3 and N4 are very similar, and may
be omitted here.
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